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Spatial soliton by cascading y(? effect and its self-induced
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The formation of the spatial solitons in the quadratic nonlinearity X(z) media by cascading second harmonic
generation (SHG) in quasi-phase-matched (QPM) sample is studied on the basis of nonlinear Schrédinger
equation (NLSE). When the solitary wave propagates in the QPM media, it formed optical wave-guides
through cascading X(z) effect called self-induced soliton wave-guide. Transverse refractive index distribu-
tion of the self-induced soliton wave-guide of fundamental and SHG wave is obtained by cascading process.
Analysis of guided-mode of such self-induced soliton wave-guide is first proposed to our knowledge. Be-
cause the power needed for forming the spatial solitons in cascading process is much lower than that in
Kerr media, this kind of self-induced soliton wave-guide shows potential applications in all-optical signal

process.
OCIS codes: 230.4320, 230.0250, 230.7400.

Wave propagation in materials with substantial disper-
sion or diffraction and significant x(?) nonlinearity can be
described by the nonlinear Schrédinger equation (NLSE)
and its variants!'l. The NLSE has exact soliton solu-
tions that correspond to a balance between nonlinearity
and dispersion in the case of temporal solitons or be-
tween nonlinearity and diffraction in the case of spatial
solitons. The equations that describe the y(2 : (2
cascaded nonlinearity can be reduced in the NLSE equa-
tion. Solitary waves in quadratic materials have at-
tracted growing attention, because of the possibility to
employ large second-order nonlinearities for the needs of
all-optical switching. Such spatial solitary waves have
been recently observed experimentally in a LiNbOj slab
waveguidel?,

The quasi-phase-matched (QPM) technique is known
as an attractive way to obtain %ood phase matching, and
has been studied intensively®l. The QPM technique
relies on the periodic modulation of the nonlinear sus-
ceptibility or refractive index, by which an additional
wave vector is introduced, which can compensate for
the mismatch between the wave vectors of the funda-
mental and second-harmonic waves. With the QPM
technique, phase matching becomes possible at ambient
temperatures, and does not introduce spatial walk off.
Self-induced trapping of light and formation of spatial
solitions in bulk media and in planar wave-guides can
utilize such QPM techniques!®). Formation of solitons in
QPM samples could open the possibility of important
applications of the solitons in quadratic media, mainly
by significantly reducing the power requirements.

In this paper we present the formation of spatial soli-
tons with light beams propagating in QPM media by cas-
cading process. We get numerical solutions for two-wave
solitons. And we firstly investigate the soliton-induced
wave-guide in a LiNbO3 slab wave-guide of a QPM struc-
ture. We consider light beams travelling in a medium
with a large quadratic nonlinearity under conditions type
I QPM second-harmonic generation (SHG). In the slowly
varying envelope approximation, the beam evolution can
be described by the reduced normalized equations
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where r = —1, a = —ki/ky ~ —0.5, B = kn?Ak
(Ak = 2k; — ka), € = 2/kin?, and 7 is a characteristic
beam width. The parameter § accounts for the Poynting
vector walk-off that occurs in birefringent media when
propagation is not along the crystal optical axes and in
typical QPM geometries, we set § = 0. The function
n(&) stands for the periodic sign reversal of the nonlinear
coefficients involved in QPM.

QPM relies on the periodic inversion of the sign of the
nonlinear x(?) coefficient at given multiples of the co-
herence length [, = w/|Ak|, and the so-called mth-order
QPM corresponds to a periodic domain inversion with
period 2ml.. Ideally, the resulting nonlinear coefficient
of the material is a steplike function along the longitudi-
nal coordinate, as shown in Fig. 1.

The periodic normalized nonlinear coefficient n(§) is
expressed by its Fourier series expansion

nm(€) = Y Crexp(ilgmé), (2)
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Fig. 1. The fun n(¢) ideally reverse sign from +1 to —1 peri-
odically.
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in terms of the spatial frequency ¢, = 2n/An(An =
m2m/|3]). In Fig. 1 case, one has

2
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In fact, we should consider QPM domain lengths a
bit longer(or shorter)than the nominal QPM length at
a given operating frequency, so A = A,,, + AA. As a
consequence, one has ¢ = ¢, — €, with

2rAA

"= KA + AA) @

In general the biggest nonlinearity is obtained for 1st-
order QPM samples, so we only consider m = 1 and we
state 8 ~ 102!, Thus we can obtain
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The global phases of the fundamental and the second-
harmonic waves that form the families of stationary soli-
tons in QPM samples satisfy the relation 6; ~ 26, +¢ +
/2.

To reduce Eq. (5), we generally consider

ay = ay(s) exp(ipé),

s = iaa(s) exp(iuf). (6)

So we get
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Fig. 2. Stationary soliton solutions of the fundamental and
the second-harmonic waves in QMP.

1, 2
—2as + 1t ;a% =0. (7)

Figure 2 shows the shape of the ay, as (a1(0) = 4.8,
(6] (0) = 28)

As consider solitons in a concrete slab LiNbO3; WG@G,
we get estimated value of n§°®d ~ 205 x 10713
cm?/W. And from the lowest approximation for the value
|ngascad| = |[2x? /)% (47 [/ Aceo) (1 /n2,n? Ak)|, we get the
x? ~17 pm/V.

We can easily obtain the transverse refractive index
distribution of soliton wave-guide of fundamental waves
from Fig. 2.

We know the Helmholtz equation on TE modes

5z T @)k = 87%(z) =0, (8)
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Fig. 3. Dispersion curve of spatial soliton induced wave-guide.
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Fig. 4. Transverse refractive index distribution of fundamen-
tal soliton wave-guide. (a) Ao = 1.064 um, ng = 2.1554;
(b) Ao = 0.633 pm, ng = 2.2019. Internal intensity (after
subtraction of reflection losses) is 1.65 GW/cm? (about ten
times less than that in the KTP).
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where z is the propagation direction, 3 is the propaga-
tion constant, and ¥ is the guide-mode E,. From the
above, we can get the relation between the normalized
frequency (V) and the normalized refractive index (b) of
solitary waves, as shown in Fig. 3.

For example, in Fig. 4(a), we can see the distribution
of transverse refractive index , and there are two turning
points. We can get the following modes equation

[ waae =t Hr m=0129, @
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where k() = [k2n?(z) — B2]'/?; x1, x5 are two turning
points, and m is mode number. We get 5 = 2.025934208,
when m =0 (A = 1.064 pum).

While m = 1,2,3,---, we cannot find the appropriate
value of 3, so we just get only one self-induced mode in
the slab LiNbO3; wave-guide.

We have got the spatial solitons in the SHG by cascad-
ing process in QPM. And we also analyzed self-induced

guide modes of the fundamental spatial solitary wave in
concrete slab LiNbO3 WG of a QPM structure. Because

the power needed for the formation of the spatial soli-
ton is greatly reduced, which is about ten times less than
that in KTP media, we are easier to obtain the solitary
wave-guide mode in PPLN. Thus it is helpful to apply
these self-induced modes in the all optics signal process
such as all optical switches.

K. Hong’s e-mail address is hongkehong@mail.china.
com.
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